Motor development in children born preterm

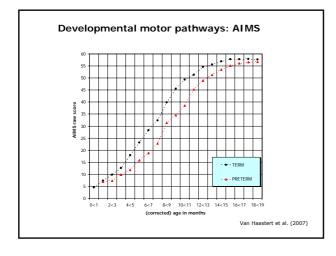
Marian Jongmans

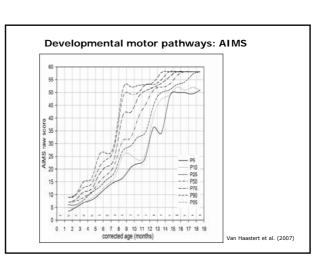
Department of Pediatric Psychology University Medical Center Utrecht Wilhelmina Children's Hospital & Department of Special Education Faculty of Social Sciences University of Utrecht

Long-term outcome of preterm birth

Personality at young adulthood → less negative emotions, more dutiful and cautious & display more warmth in social relationships (Pesonen et al., 2008)

Short-term outcome of preterm birth


... nevertheless, many preterm born children experience movement difficulties at a young age



Personal lessons learned

- Gap between detecting severe motor disability infancy and mild motor disability at school age \rightarrow
 - what happens with developmental trajectories between infancy and school entry in non-severely disabled preterm children? → longitudinal studies needed
- High comorbidity motor and cognitive disabilities \Rightarrow
 - early motor development as a (risk) predictor of what? → broaden scope to include measures of cognitive functions
- Understanding Deviant/delayed Child Development ${\mathfrak G}$

Developmental motor pathways: AIMS

Example: 3 GA 28 5/7 wk, BW 1250 gr

6,5 months corrected age Raw AIMS score = 14

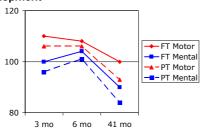
• Norm FT: < P5 Zs -2.6 • Norm PT: P10-25 Zs -1.15

15,6 months corrected age Raw score AIMS = 53

• Norm FT: < P5 Zs -10.67 • Norm PT: P25 Zs -0.60

Walking at 18,6 / 16 mo CA

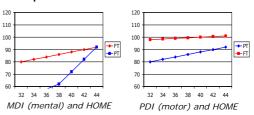
Association global motor & cognitive development


- Preterm (n = 35) and full term children (n = 43)
- Measured at 3, 6 and 41 months:
 - Global motor performance (BSID)
 - Global cognitive performance (BSID)

Hypotheses:

- Preterm children increasingly delayed in both domains, stability expected for full term children
- Quality of care and stimulation provided to child at home relate to both cognitive and motor performance
- Motor performance more strongly related to biological risk than cognitive performance

Msc Thesis Hanna Mulder (2006)


Association global motor &cognitive development

 Rate of development of cognitive and motor scores over time the same for preterm and full term group (motor scores > mental scores!)

Msc Thesis Hanna Mulder (2006)

Association global motor & cognitive development

- Higher HOME scores *buffer* negative effect of biological risk (i.e. preterm birth) on mental (but not motor) scores at preschool age
- Biological risk (i.e. preterm birth) related to motor score (not shown)

Msc Thesis Hanna Mulder (2006)

Association development exploratory motor behaviour and (executive) attention

- Preterm infants only (n = 72)
- Measured at 7, 10 and 14 months:
 - Exploratory motor behaviour
 - Attention: A-not-B task performance

Hypotheses:

- Biological risk factors predict development of exploratory motor behaviours
- Development of exploratory motor behaviour related to development of performance on A-not-B task

Msc Thesis Renske Schappin (2008)

(executive) attention: A-not-B task

One small step for students, one giant statistical leap for me

Association development exploratory motor behaviour and (executive) attention

- Biological risk predicts initial level mouthing behaviour Risk \rightarrow IC_{mouth}, b = .10, p < .05, β = .58
- Holding a toy in each hand predicts initial level and slope of A-not-B performance, but **not** vice versa $IC_{each} \rightarrow IC_{AB}$, b=.20, p<.01, $\beta=.74$ $IC_{each} \rightarrow SL_{AB}$, b=-.70, p<.01
- Biological risk predicts certain exploratory motor behaviours
- Certain exploratory motor behaviours predict executive attention

Msc Thesis Renske Schappin (2008)

Some thoughts on motor development in children born preterm \dots

- Pathways of (non-severly disabled) preterms similar shape as full terms (AIMS and BSID) but lower initial states possible → use tailored norms! (compare: norms children with Down's syndrome)
- Associations between motor and cognitive development
 → motor development as rate-limiting factor for certain cognitive functions
- Role of environment in motor development → present but limited: biological risk more important (compare: need stimulating environment for cognitive development)